液晶顯示器
液晶顯示器(英語:Liquid Crystal Display,縮寫:LCD)為平面薄型的顯示裝置,由一定數量的彩色或黑白畫素組成,放置於光源或者反射面前方。液晶顯示器功耗低,因此倍受工程師青睞,適用於使用電池的電子裝置。
構造
液晶顯示器的每個畫素由以下幾個部分構成:懸浮於兩個透明電極(氧化銦錫)間的一列液晶分子層,兩邊外側有兩個偏振方向互相垂直的偏振過濾片。如果沒有電極間的液晶,光透過其中一個偏振過濾片其偏振方向將和第二個偏振片完全垂直,因此被完全阻擋了。但是如果透過一個偏振過濾片的光線偏振方向被液晶旋轉,那麼它就可以透過另一個偏振過濾片。液晶對光線偏振方向的旋轉可以透過靜電場控制,從而實作對光的控制。
液晶分子極易受外加電場的影響而產生感應電荷。將少量的電荷加到每個畫素或者子畫素的透明電極產生靜電場,則液晶的分子將被此靜電場誘發感應電荷並產生靜電扭力,而使液晶分子原本的旋轉排列產生變化,因此也改變透過光線的旋轉幅度。改變一定的角度,從而能夠透過偏振過濾片。
在將電荷加到透明電極之前,液晶分子的排列被電極表面的排列決定,電極的化學物質表面可作為晶體的晶種。在最常見的TN型(Twisted Nematic,扭曲向列型)液晶顯示器中,液晶上下兩個電極垂直排列。液晶分子螺旋排列,透過一個偏振過濾片的光線在透過液晶片後偏振方向發生旋轉,從而能夠透過另一個偏振片。在此過程中一小部分光線被偏振片阻擋,從外面看上去是灰色。將電荷加到透明電極上後,液晶分子將幾乎完全順著電場方向平行排列,因此透過一個偏振過濾片的光線偏振方向沒有旋轉,因此光線被完全阻擋了。此時畫素看上去是黑色。透過控制電壓,可以控制液晶分子排列的扭曲程度,從而達到不同的灰度。
有些液晶顯示器在交流電作用下變黑,交流電破壞了液晶的螺旋效應,而關閉電流後,液晶顯示器會變亮或者透明,這類液晶顯示器常見於筆記型電腦與平價液晶顯示器上。另一類常應用於高畫質液晶顯示器或大型液晶電視上的液晶顯示器則是在關閉電源時,液晶顯示器為不透光的狀態。
轉自維基百科
為了省電,液晶顯示器採用復用的方法,在復用模式下,一端的電極分組連線在一起,每一組電極連線到一個電源,另一端的電極也分組連線,每一組連線到電源另一端,分組設計保證每個畫素由一個獨立的電源控制,電子裝置或者驅動電子裝置的軟體透過控制電源的開/關序列,從而控制畫素的顯示。
檢驗液晶顯示器的指標包括以下幾個重要方面:顯示大小、反應時間(同步速率)、陣列型別(主動和被動)、視角、所支援的顏色、亮度和對比度、解析度和螢幕高寬比、以及輸入介面(例如視覺介面和視訊顯示陣列)。
顯示原理
在不加電壓下,光線會沿著液晶分子的間隙前進而轉折90度,所以光可通過。但加入電壓後,光順著液晶分子的間隙直線前進,因此光被濾光板所阻隔。
液晶是具有流動特性的物質,所以只需外加很微小的力量即可使液晶分子運動,以最常見普遍的向列型液晶為例,液晶分子可輕易的藉著電場作用使得液晶分子轉向,由於液晶的光軸與其分子軸相當一致,故可藉此產生光學效果,而當加於液晶的電場移除消失時,液晶將藉著其本身的彈性及黏性,液晶分子將十分迅速的回復原來未加電場前的狀態。
透射和反射顯示
液晶顯示器可透射顯示,也可反射顯示,決定於它的光源放哪裡。
透射型液晶顯示器由一個螢幕背後的光源照亮,而觀看則在螢幕另一邊(前面)。這種型別的LCD多用在需高亮度顯示的應用中,例如電腦顯示器、PDA和手機中。用於照亮液晶顯示器的照明裝置的功耗往往高於液晶顯示器本身。
反射型液晶顯示器,常見於電子鐘錶和計算機中,(有時候)由後面的散射的反射面將外部的光反射回來照亮螢幕。這種型別的液晶顯示器具有較高的對比度,因為光線要經過液晶兩次,所以被削減了兩次。不使用照明裝置明顯降低了功耗,因此使用電池的裝置電池使用更久。因為小型的反射型液晶顯示器功耗非常低,以至於光電池就足以給它供電,因此常用於袖珍型計算機。
半穿透反射式液晶顯示器既可以當作透射型使用,也可當作反射型使用。當外部光線很足的時候,該液晶顯示器按照反射型工作,而當外部光線不足的時候,它又能當作透射型使用。
彩色顯示
液晶顯示器技術也是根據電壓的大小來改變亮度,每個液晶顯示器的子圖元顯示的顏色取決於色彩篩檢程式。由於液晶本身沒有顏色,所以用濾色片產生各種顏色,而不是子圖元,子圖元只能通過控制光線的通過強度來調節灰階,只有少數主動矩陣顯示採用類比信號控制,大多數則採用數位信號控制技術。大部分數位控制的液晶顯示器都採用了八位控制器,可以產生256級灰階。每個子圖元能夠表現256級,那麼你就能夠得到2563種色彩,每個圖元能夠表現16,777,216種成色。因為人的眼睛對亮度的感覺並不是線性變化的,人眼對低亮度的變化更加敏感,所以這種24位元的色度並不能完全達到理想要求,工程師們利用脈衝電壓調節的方法以使色彩變化看起來更加統一。
彩色液晶顯示器中,每個畫素分成三個單元,或稱子畫素,附加的濾光片分別標記紅色,綠色和藍色。三個子畫素可獨立進行控制,對應的畫素便產生了成千上萬甚至上百萬種顏色。老式的CRT採用同樣的方法顯示顏色。根據需要,顏色元件按照不同的畫素幾何原理進行排列。
主動陣列和被動陣列
常見於電子錶及口袋型計算機的以少量片段構成之液晶顯示器,其各片段均具有單一電極接點。一個外部專用電路提供電荷到每一個控制單元,這種顯示結構在有較多顯示單位(如液體顯示屏)時會顯得笨重。小型單色顯示器,例如PDA上的或舊型筆記型電腦螢幕的被動陣列液晶顯示器,即應用超扭轉向列(STN)或雙層超扭轉向列(DSTN)技術(DSTN修正STN的色彩偏差問題)。
顯示器上的每一行或列都有一個獨立的電路,每一個像素的位置也要一個行和列同時指定,這類顯示方式稱為「被動陣列」,因為每一個像素也要在更新前記著各自的狀態,此時每像素也是沒有穩定的電荷供應。當像數增加時,相對的行和列數目也會增加,這種顯示方式變得更難使用,以被動陣列所製造的液晶顯示器特性為非常慢的反應時間及低對比度。
現行高解析度彩色顯示器,例如電腦螢幕或電視,皆為主動陣列。薄膜電晶體(TFT)陣列(見薄膜電晶體液晶顯示器)會被添加到偏光板與色彩濾鏡上。每個畫素都有自己的電晶體,允許操控單一畫素。當一條列線路被開啟時,所有行線路會連接到一整列(row)的畫素,而每條行線會有正確的電壓驅動,這條列線路會關掉而另一列(row)被開啟。在一次完整的畫面更新運作中,所有列線路會依照時間序列被開啟。同等大小的主動陣列顯示器比起被動陣列顯示器會顯得更亮更銳利,而且有短的反應時間。
轉貼自維基百科